
Rounding Values Preserving Their Sum with RoundToSum (Excel / VBA)

(C) (P) 2024 Bernd Plumhoff Status: 27-October-2024

Abstract

Rounded values do not always sum up to their original total, as demonstrated in this article. How can

you ensure that the sum of rounded percentages equals exactly 100%? Is it possible to guarantee

that, for accounting purposes, the distribution of overhead costs precisely matches the original total?

These challenges are well-known and have been studied extensively.

This article introduces a simple solution using Excel/VBA. The function presented here can round

relative values (e.g., percentages) to ensure they sum to exactly 100%. It can also round absolute

values (such as cost distributions) while preserving their original sum after rounding. A key

parameter allows users to choose which type of error to minimize — absolute error or relative error

— compared to the common half-up rounding method.

Table of Contents

Rounding Values Preserving Their Sum with RoundToSum (Excel / VBA) ... 1

Abstract ... 1

Rounding Values Preserving Their Sum ... 2

Percentage Example .. 2

Example with Absolute Values .. 2

The User-Defined VBA Function RoundToSum .. 3

RoundToSum Program Code ... 4

Round2Sum Lambda Expression ... 5

Rounding Values Alters Their Sum .. 6

Usage Examples of RoundToSum .. 8

Allocation of Overheads .. 8

Example of an Exact Relation of Random Numbers .. 10

Fair Staff Selection Based on Team Size .. 13

Distribute a Sample Normally.. 15

Distribution of Budgets Among Remaining Staff ... 20

Take Vacation When Less is Going on ... 21

Assign Work Units Adjusted by Delivered Output .. 23

RoundToSum Versus Other Methods .. 24

RoundToSum Versus Other “Simple” Methods ... 24

RoundToSum Compared to the D’Hondt Approach .. 27

Literature ... 27

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 2 / 27

Rounding Values Preserving Their Sum

If you need to round values without changing their sum, you might need to round one or more

summands to the more distant rounded value.

Percentage Example

For example, the values 11, 45, and 555, which sum to 611, do not yield a percentage total of 100.00

but rather 99.99 if rounded to two decimal places. The bold values in non-sum cells have been

adjusted using the RoundToSum function:

 Values

Percentage
rounded to
2 decimals

Minimize
absolute
Error

Minimize
relative
Error

 11 1.80 1.80 1.80

 45 7.36 7.37 7.36

 555 90.83 90.83 90.84

Sum 611 99.99 100.00 100.00

The Excel / VBA function call RoundToSum({11,45,555},2,FALSE,1) would result in {1.80,7.37,90.83},

though. Here, the percentage value 7.364975 is rounded differently to achieve a percentage sum of

100.00 and to minimize the absolute error compared to half-up rounding. By using

RoundToSum({11,45,555},2,FALSE,2) we would have received {1.80,7.36,90.84}, as this would

minimize the relative error.

Example with Absolute Values

The sum of the second column differs by +2,000 from the rounded sum. The bold values in non-sum

cells have been adjusted using the RoundToSum function:

 Values

Rounded to
absolute
1,000

Minimize
absolute
Error

Minimize
relative
Error

 4.523 5.000 5.000 5.000

 456 0 0 0

 -78.845 -79.000 -79.000 -79.000

 -14.491 -14.000 -15.000 -14.000

 65.789 66.000 66.000 66.000

 129.512 130.000 129.000 129.000

 15.562 16.000 16.000 16.000

 548.555 549.000 549.000 548.000

 1.590 2.000 2.000 2.000

 -897 -1.000 -1.000 -1.000

 6.968 7.000 7.000 7.000

 2.987 3.000 3.000 3.000

Sum 681.709 684.000 682.000 682.000

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 3 / 27

The User-Defined VBA Function RoundToSum

Name

RoundToSum – Rounding values preserving their rounded sum

Synopsis

RoundToSum(vInput, [lDigits], [bAbsSum], [lErrorType])

Description

RoundToSum rounds values without altering their rounded sum. It uses the largest remainder

method to minimize the error compared to the commonly used half-up rounding method.

If the error is identical for one or more values, the first value(s) encountered will be adjusted.

Note: This solution is limited to one-dimensional tables without subtotals. There is no general

solution for higher-dimensional tables or tables with subtotals.

Parameters

vInput Range or array containing the unrounded input values.

lDigits Optional, default value is 2. The number of digits to round to. For example: 0 rounds

to integers, 2 rounds to the nearest cent, -3 rounds to the nearest thousand.

bAbsSum Optional, default value is TRUE. TRUE rounds the values directly which you often

need for accounting calculations. FALSE adjusts the percentages so they sum to

exactly 100%. This is frequently used in presentations of percentage distributions.

lErrorType Optional, default value is 1. The type of error to minimize: 1 for absolute error, 2 for

relative error. The absolute error you normally minimize for values you need to book

in general ledgers. For statistical distributions you often minimize the relative error

to avoid amendments in the tails of the distributions.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 4 / 27

RoundToSum Program Code

Enum mc_Macro_Categories

 mcFinancial = 1

 mcDate_and_Time

 mcMath_and_Trig

 mcStatistical

 mcLookup_and_Reference

 mcDatabase

 mcText

 mcLogical

 mcInformation

 mcCommands

 mcCustomizing

 mcMacro_Control

 mcDDE_External

 mcUser_Defined

 mcFirst_custom_category

 mcSecond_custom_category 'and so on

End Enum 'mc_Macro_Categories

Function RoundToSum(vInput As Variant, Optional lDigits As Long = 2, Optional bAbsSum As Boolean = True, _

 Optional lErrorType As Long = 1) As Variant

'Calculate rounded summands which exactly add up to the rounded sum of unrounded summands.

'It uses the largest remainder method which minimizes the error to the original unrounded summands.

'V2.3 PB 27-Oct-2024 (C) (P) by Bernd Plumhoff

Dim b As Boolean, i As Long, j As Long, k As Long, n As Long, lCount As Long, lSgn As Long

Dim d As Double, dDiff As Double, dRoundedSum As Double, dSumAbs As Double: Dim vA As Variant

With Application.WorksheetFunction

vA = .Transpose(.Transpose(vInput)): On Error GoTo Errhdl: i = vA(1) 'Force error in case of vertical arrays

On Error GoTo 0: n = UBound(vA): ReDim vC(1 To n) As Variant, vD(1 To n) As Variant: dSumAbs = .Sum(vA)

For i = 1 To n

 d = IIf(bAbsSum, vA(i), vA(i) / dSumAbs * 100#): vC(i) = .Round(d, lDigits)

 If lErrorType = 1 Then 'Absolute error

 vD(i) = vC(i) - d

 ElseIf lErrorType = 2 Then 'Relative error

 vD(i) = (vC(i) - d) * d

 Else

 RoundToSum = CVErr(xlErrValue): Exit Function

 End If

Next i

dRoundedSum = .Round(IIf(bAbsSum, dSumAbs, 100#), lDigits)

dDiff = .Round(dRoundedSum - .Sum(vC), lDigits)

If dDiff <> 0# Then

 lSgn = Sgn(dDiff): lCount = .Round(Abs(dDiff) * 10 ^ lDigits, 0)

 'Now find highest (lowest) lCount indices in vD

 ReDim m(1 To lCount) As Long

 For i = 1 To lCount: m(i) = i: Next i

 For i = 1 To lCount - 1

 For j = i + 1 To lCount

 If lSgn * vD(m(i)) > lSgn * vD(m(j)) Then k = m(i): m(i) = m(j): m(j) = k

 Next j

 Next i

 For i = lCount + 1 To n

 If lSgn * vD(i) < lSgn * vD(m(lCount)) Then

 j = lCount - 1

 Do While j > 0

 If lSgn * vD(i) >= lSgn * vD(m(j)) Then Exit Do

 j = j - 1

 Loop

 For k = lCount To j + 2 Step -1: m(k) = m(k - 1): Next k: m(j + 1) = i

 End If

 Next i

 For i = 1 To lCount: vC(m(i)) = .Round(vC(m(i)) + dDiff / lCount, lDigits): Next i

End If

If b Then vC = .Transpose(vC)

RoundToSum = vC

Exit Function

Errhdl:

'Transpose variants to be able to address them with vA(i), not vA(i,1)

b = True: vA = .Transpose(vA): Resume Next

End With

End Function

Sub DescribeFunction_RoundToSum()

'Run this only once, then you will see this description in the function menu

Dim FuncName As String, FuncDesc As String, Category As String, ArgDesc(1 To 4) As String

FuncName = "RoundToSum"

FuncDesc = "Rounding values preserving their rounded sum"

Category = mcMath_and_Trig

ArgDesc(1) = "Range or array which contains unrounded values"

ArgDesc(2) = "[Optional = 2] Number of digits to round to. For example: 0 rounds to integers, 2 rounds to the cent, -3 will

use thousands"

ArgDesc(3) = "[Optional = True] True takes the summands as they are; False works on the summands' percentages to make all

percentages add up to 100% exactly"

ArgDesc(4) = "[Optional = 1] Error type: 1= absolute error, 2 = relative error"

Application.MacroOptions _

 Macro:=FuncName, _

 Description:=FuncDesc, _

 Category:=Category, _

 ArgumentDescriptions:=ArgDesc

End Sub

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 5 / 27

Round2Sum Lambda Expression

With three Lambda expressions we can replace the VBA function RandToSum by this Round2Sum

Lambda expression:

=LAMBDA(vI,lD,bA,lE,

 LET(

 i,IF(bA,vI,vI/SUM(vI)%),

 r,ROUND(i,lD),

 _C,ROUND(SUM(i),lD)-SUM(r),

 _E,CHOOSE(lE,r-i,(r-i)*i),

 _R, UniqRank(_E,IF(_C>0,1,0)),
 _D,IF(_R<=ROUND(ABS(_C*10^lD),0),SGN(_C)*10^-lD,0),

 r+IF(ROWS(r)=1,TRANSPOSE(_D),_D)

)

)

UniqRank is defined as:

=LAMBDA(Ref,[Order],

 LET(

 _ord,IF(ISOMITTED(Order),-1,IF(Order=0,-1,1)),

 _r,INDEX(IF(ROWS(Ref)=1,TRANSPOSE(Ref),Ref),,1),

 _c,ROWS(_r),

 _i,SEQUENCE(ROWS(_r)),

 INDEX(SORT(HSTACK2(_i,INDEX(SORT(HSTACK2(_r,_i),,_ord),,2)),2,1),,1)

)

)

And – since Excel’s worksheet function HSTACK only accepts ranges, not arrays – HSTACK2 as:

=LAMBDA(a,b,

 MAKEARRAY(

 ROWS(a),

 2,

 LAMBDA(r,c,

 IF(c=1,INDEX(a,r),INDEX(b,r))

)

)

)

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 6 / 27

Rounding Values Alters Their Sum

 How likely is it that a sum of rounded values is not identical to

their rounded sum?

For two random floating point numbers this is obvious: The

likelihood is around 25% - that is the percentage of red in this

picture:

But it might be somewhat surprising that the likelihood

approaches 90% if you round and add more and more numbers:

With seven floating point numbers the likelihood is already larger than 50% that the sum of rounded

values is not equal to their rounded sum.

Rounded Percentages

Rounded percentages also often fail to add up to 100%.

With two random numbers the issue arises only if both numbers

equal 0.5:

But with more random numbers it is similar to the problem stated

initially, just with around one number more. Rounded percentages

of three arbitrary numbers fail to add up to 1 with a chance of

around 25%:

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 7 / 27

Monte Carlo Program Code

Const n = 100

Const runs = 20000

Const bOnlyPositive = True 'Without loss of generality

Sub monte_carlo_add_rounded_values()

'Calculates for 2 to n how likely it is

'that rounding would not alter their sum.

'Example: for 2 numbers there is a 25% chance

'that the sum of their rounded values is not

'equal to their rounded sum.

'Source (EN): https://www.sulprobil.com/rounding_values_alters_their_sum_en/

'Source (DE): https://www.bplumhoff.de/werte_runden_aendert_ihre_summe_de/

'(C) (P) by Bernd Plumhoff 16-Dec-2023 PB V0.3

Dim i As Long

Dim j As Long

Dim k As Long

Dim m As Long

Dim d As Double

Dim s1 As Double

Dim s2 As Double

With Application.WorksheetFunction

Randomize

For i = 2 To n

 m = 0

 For j = 1 To runs

 s1 = 0#

 s2 = 0#

 For k = 1 To i

 If bOnlyPositive Then

 d = Rnd()

 Else

 d = 2# * Rnd() - 1#

 End If

 s1 = s1 + d

 s2 = s2 + .Round(d, 0)

 Next k

 s1 = .Round(s1, 0)

 If s1 <> s2 Then

 m = m + 1

 End If

 Next j

 Cells(i, 1) = i

 Cells(i, 2) = m / runs

Next i

End With

End Sub

Sub monte_carlo_percentage_sum_of_rounded_values()

'Calculates for 2 to n how likely it is that

'rounding would not alter their percentage sum.

'Example: for 2 numbers there is a 25% chance

'that the sum of their rounded values is not

'equal to their rounded sum.

'Source (EN): https://www.sulprobil.com/rounding_values_alters_their_sum_en/

'Source (DE): https://www.bplumhoff.de/werte_runden_aendert_ihre_summe_de/

'(C) (P) by Bernd Plumhoff 16-Dec-2023 PB V0.2

Dim i As Long

Dim j As Long

Dim k As Long

Dim m As Long

Dim s1 As Double

Dim s2 As Double

With Application.WorksheetFunction

Randomize

For i = 2 To n

 m = 0

 ReDim e(1 To i) As Double

 For j = 1 To runs

 s1 = 0#

 For k = 1 To i

 If bOnlyPositive Then

 e(k) = Rnd()

 Else

 e(k) = 2# * Rnd() - 1#

 End If

 s1 = s1 + e(k)

 Next k

 s2 = 0#

 For k = 1 To i

 e(k) = .Round(1000# * e(k) / s1, 0)

 s2 = s2 + e(k)

 Next k

 If s2 <> 1000# Then

 m = m + 1

 End If

 Next j

 Cells(i, 1) = i

 Cells(i, 2) = m / runs

Next i

End With

End Sub

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 8 / 27

Usage Examples of RoundToSum

Allocation of Overheads

When allocating overhead costs to products you often encounter the fact that the resulting sum of

allocated overheads does not equal the original cost sum. Due to rounding differences you frequently

face a little cent difference. In this case the user defined function RoundToSum can help.

A Real-Life Example

We present an allocation of overheads where all individual cent values accurately add up to their

intermediate or final sums.

First you define how the overheads have to be allocated to support cost centres (sheet ‘Keys’):

The first allocation of overheads uses a rounding correction so that all summands accurately sum up

on support cost centre level (sheet ‘1_Allocation’):

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 9 / 27

The second allocation of

overheads (sheet ‘Keys’)

also uses a rounding

correction so that all

support cost centres get

accurately distributed to

products:

The final result (sheet ‚2_Allocation‘):

This correct allocation of overheads you will be able to enter into a general ledger without any cent /

penny difference.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 10 / 27

Example of an Exact Relation of Random Numbers

It is fairly easy to create a loaded die, let us say on average the 6 should appear twice as often as all

the other numbers 1 thru 5: Enter into A1: =MIN(INT(RAND()*7+1),6)

But what if you want to create 7 rolls of this die and all numbers between 1 and 5 should appear

exactly once and 6 exactly twice?

Here is a general solution:

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 11 / 27

The User-Defined VBA Function sbExactRandHistogrm

Name

sbExactRandHistogrm – Create an exact double histogram distribution.

Synopsis

sbExactRandHistogrm(ldraw, dmin, dmax, vWeight)

Description

sbExactRandHistogrm creates an exact histogram distribution for ldraw draws of floating point

numbers with double precision within range dmin:dmax. This range is divided into vWeight.count

classes. Each class has weight vWeight(i), reflecting the probability of occurrence of a value within

the class. If weights can’t be achieved exactly for ldraw draws the largest remainder method will be

applied to minimize the absolute error. This function calls RoundToSum.

Parameters

ldraw Number of draws

dmin Minimum = lower boundary of range of numbers to draw

dmax Maximum = upper boundary of range of numbers to draw

vWeight Array of weights. Array size determines the number of different classes the range dmin :

dmax is divided into. Values in this array specify likelihood of this class' numbers to

appear (be drawn).

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 12 / 27

sbRandHistogrm Program Code

Function sbExactRandHistogrm(ldraw As Long, _

 dmin As Double, _

 dmax As Double, _

 vWeight As Variant) As Variant

'Creates an exact histogram distribution for ldraw draws within range dmin:dmax.

'This range is divided into vWeight.count classes. Each class has weight vWeight(i)

'reflecting the probability of occurrence of a value within the class.

'If weights can't be achieved exactly for ldraw draws the largest remainder method will

'be applied to minimize the absolute error. This function calls (needs) RoundToSum.

'Source (EN): http://www.sulprobil.de/sbexactrandhistogrm_en/

'Source (DE): http://www.berndplumhoff.de/sbexactrandhistogrm_de/

'(C) (P) by Bernd Plumhoff 01-May-2021 PB V0.9

Dim i As Long, j As Long, n As Long

Dim vW As Variant

Dim dSumWeight As Double, dR As Double

Randomize

With Application.WorksheetFunction

vW = .Transpose(vWeight)

On Error GoTo Errhdl

i = vW(1) 'Throw error in case of horizontal array

On Error GoTo 0

n = UBound(vW)

ReDim dWeight(1 To n) As Double

ReDim dSumWeightI(0 To n) As Double

ReDim vR(1 To ldraw) As Variant

For i = 1 To n

 If vW(i) < 0# Then 'A negative weight is an error

 sbExactRandHistogrm = CVErr(xlErrValue)

 Exit Function

 End If

 'Calculate sum of all weights

 dSumWeight = dSumWeight + vW(i)

Next i

If dSumWeight = 0# Then

 'Sum of weights has to be greater zero

 sbExactRandHistogrm = CVErr(xlErrValue)

 Exit Function

End If

For i = 1 To n

 'Align weights to number of draws

 dWeight(i) = CDbl(ldraw) * vW(i) / dSumWeight

Next i

vW = RoundToSum(dWeight, 0)

On Error GoTo Errhdl

i = vW(1) 'Throw error in case of horizontal array

On Error GoTo 0

For j = 1 To ldraw

 dSumWeight = 0#

 dSumWeightI(0) = 0#

 For i = 1 To n

 'Calculate sum of all weights

 dSumWeight = dSumWeight + vW(i)

 'Calculate sum of weights till i

 dSumWeightI(i) = dSumWeight

 Next i

 dR = dSumWeight * Rnd

 i = n

 Do While dR < dSumWeightI(i)

 i = i - 1

 Loop

 vR(j) = dmin + (dmax - dmin) * (CDbl(i) + _

 (dR - dSumWeightI(i)) / vW(i + 1)) / CDbl(n)

 vW(i + 1) = vW(i + 1) - 1#

Next j

sbExactRandHistogrm = vR

Exit Function

Errhdl:

'Transpose variants to be able to address

'them with vW(i), not vW(i,1)

vW = .Transpose(vW)

Resume Next

End With

End Function

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 13 / 27

Fair Staff Selection Based on Team Size

Let us assume your company needs to get some special tasks done. All staff members can do the

work. You want the teams to second their staff based on the size of each team. This selection can be

done by the user-defined function RoundToSum.

Since we cannot guarantee that each team can provide staff exactly in relation to its staff number for

each special task, we need to call RoundToSum including a lookback onto previous staff selections.

RoundToSum uses the largest remainder method (also called Hare-Niemeyer) which can suffer from

the Alabama paradoxon. If the total number of staff to be selected increases it can happen that a

team needs to provide less staff than before. Because we cannot account for this in hindsight, this

paradoxon needs to be dealt with as soon as it occurs.

Example

On 1-Jan-2023 these teams exist (sheet ‘Teams’, VBA name ‘wsT’):

Over the following three months these staff numbers are required for special tasks and are selected

(sheet ‘Allocation’, VBA name ‘wsA’):

On 1-Feb-2023 the largest remainder method

would have selected a total number of 184, 125,

13, and 2 employees of teams A, B, C, and D

ausgewählt. But on 1-Jan-2023 team C had

already provided 14 members of staff which

cannot be taken back. This means that team A

or team B needs to provide one employee less.

The implemented algorithm looks left to right to

account for this, so in this case team A is

impacted. On 1-Mar-2023 all remaining staff

counts of all teams are requested. The algorithm

selects for each team exactly its staff count in

total because the lookback includes all request

data records.

Note: The VBA name of a worksheet can be referred to directly from VBA. It might differ from the

sheet name the Excel user sees. Unfortunately you can only manually change it, not via VBA.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 14 / 27

sbFairStaffSelection Program Code

Enum TeamColums

 tc_Date = 1

 tc_TeamStart

End Enum

Enum AllocationColumns

 ac_Date = 1

 ac_Demand

 ac_Comment

 ac_TeamStart

End Enum

Sub sbFairStaffSelection()

'Based on the weights defined in tab Teams this program allocates

'a "fair" selection (the number given in column Demand of tab

'Allocation) of staff from these teams. This program uses (calls) RoundToSum

'which applies the largest remainder method, so the Alabama paradoxon

'must be taken care of. It also applies a lookback up to the topmost

'allocation data row.

'In case of negative selection counts (i. e. the Alabama paradoxon)

'the negative values will be set to zero and the necessary amendments

'(reductions) will be applied from left to right. Please order your

'teams with ascending sizes or descending sizes to account for this.

'Source (EN): https://www.sulprobil.de/sbfairstaffselection_en

'Source (DE): https://www.bplumhoff.com/sbfairstaffselection_de

'(C) (P) by Bernd Plumhoff 09-Mar-2023 PB V0.1

Dim bLookBack As Boolean

Dim bReCalc As Boolean

Dim i As Long

Dim j As Long

Dim k As Long

Dim m As Long

Dim lAmend As Long

Dim lCellResult As Long

Dim lDemand As Long

Dim lRowSum As Long

Dim lSum As Long

Dim lTotal As Long 'Most recent total number of staff in all teams

Dim sComment As String

Dim vAlloc As Variant

Dim vTeams As Variant

Dim state As SystemState

Set state = New SystemState

With Application.WorksheetFunction

vTeams = .Transpose(.Transpose(Range(wsT.Cells(1, 1).End(xlDown).Offset(0, tc_TeamStart - 1), _

 wsT.Cells(1, 1).End(xlDown).End(xlToRight))))

j = UBound(vTeams)

ReDim dAlloc(1 To j) As Double

lTotal = .Sum(vTeams)

bReCalc = False

i = 2

lDemand = wsA.Cells(i, ac_Demand)

Do While lDemand > 0

 lRowSum = .Sum(Range(wsA.Cells(i, ac_TeamStart), wsA.Cells(i, ac_TeamStart + j)))

 If lDemand <> lRowSum Then bReCalc = True

 If bReCalc Or wsA.Cells(i + 1, ac_Demand) = 0 Then

 sComment = "Recalc " & Format(Now(), "DD.MM.YYYY HH:nn:ss") & ". "

 bLookBack = False

 k = i - 1

 If k > 1 Then

 bLookBack = True

 lDemand = 0

 lSum = 0

 ReDim lTeamSum(1 To j) As Long

 Do While k > 1

 lSum = lSum + wsA.Cells(k, ac_Demand)

 lDemand = wsA.Cells(i, ac_Demand) + lSum

 For m = 1 To j

 lTeamSum(m) = lTeamSum(m) + wsA.Cells(k, m + ac_TeamStart - 1)

 Next m

 'If lSum >= lTotal Then Exit Do 'Uncomment if lookback should be restricted

 'to total staff number

 k = k - 1

 Loop

 End If

 For m = 1 To j

 dAlloc(m) = lDemand * vTeams(m) / lTotal

 Next m

 vAlloc = RoundToSum(vInput:=dAlloc, lDigits:=0)

 If bLookBack Then

 For m = 1 To j

 lCellResult = vAlloc(m) - lTeamSum(m)

 If lCellResult < 0 Then

 'The Alabama Paradoxon: we have to reduce other parties'

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 15 / 27

 'allocations because we cannot have negative allocations

 lAmend = lAmend - lCellResult

 End If

 vAlloc(m) = lCellResult

 Next m

 If lAmend > 0 Then

 For m = 1 To j

 lCellResult = vAlloc(m)

 If lCellResult < 0 Then

 vAlloc(m) = 0

 sComment = sComment & "Allocation for " & m & " set to 0. "

 ElseIf lCellResult > 0 And lAmend > 0 Then

 If lCellResult > lAmend Then

 vAlloc(m) = lCellResult - lAmend

 lAmend = 0

 Else

 vAlloc(m) = 0

 lAmend = lAmend - lCellResult

 End If

 sComment = sComment & "Allocation for " & m & " amended to " & _

 vAlloc(m) & ". "

 End If

 Next m

 End If

 End If

 wsA.Cells(i, ac_Comment) = sComment

 For m = 1 To j

 wsA.Cells(i, ac_TeamStart + m - 1) = vAlloc(m)

 Next m

 End If

 i = i + 1

 lDemand = wsA.Cells(i, ac_Demand)

Loop

Range(wsT.Cells(1, tc_TeamStart), wsT.Cells(1, 250)).Copy Destination:=wsA.Cells(1, ac_TeamStart)

End With

End Sub

Distribute a Sample Normally

You have 11.256 christmas trees in stock. A customer wants to purchse 1.500 of them, with one

condition: the average height of the trees must be 6.50 meters.

Your goal is to keep the remaining trees as close to a normal distribution as possible.

How can you achieve this?

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 16 / 27

A Sample Calculation

Let’s assume the count and distribution of trees are as shown in the diagram above.

A useful first step is to check whether your original sample is already fairly normally distributed. We

can calculate skewness using the function sbSWV. The skewness is approximately

=sbSWV(“SKEW.P”;A4:A21;B$4:B$21) = -0.35. Similarly, we calculate kurtosis with

=sbSWV(“KURT”;A4:A21;B$4:B$21), resulting in approximately 0.95. As shown in the diagram

(yellow-orange graph), the original sample is already fairly normally distributed.

However, ideally, the distribution would match the one shown in column C (formula:

=TRANSPOSE(RoundToSum(NORM.DIST(A4:A21,B24,B25,FALSE)*B22/10,0))). In this case, skewness

and kurtosis would be close to zero, though rounding may lead to slight deviations.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 17 / 27

Column H displays the ideal normal distribution after the withdrawal of trees.

The automated withdrawals in column D aim to achieve this ideal distribution. However, this is only

possible if there are enough trees of the necessary lengths. If not, you must enter a withdrawal of 0,

as trees cannot be added to the sample. For instance, in the diagram, you can see that at a length of

6.10 meters, the ideal distribution exceeds the actual remaining distribution.

The original formulas in column F should read =D4 to =D21.

These formulas are manually overwritten to:

- Achieve a total withdrawal of 1,500 trees.

- Ensure an average tree height of 6.5 meters.

- Maintain a standard deviation in the remaining sample close to the original.

- Reduce the absolute skewness compared to the original.

- Reduce the absolute kurtosis compared to the original.

In the provided sample file, significant deviations are highlighted using conditional formatting.

A Note of Caution:

It’s not always possible to achieve a fairly normal distribution in the remaining sample. It might even

be impossible to withdraw trees that meet a desired average - for example, asking for 21 trees with

an average height of 5.60 meters could be unachievable.

Helper Functions

Excel offers many basic statistical functions, but they don’t handle weighted values. The user-defined

function sbSWV (statistics for weighted values) used here provides an easy and quick assessment of

how well the samples are normally distributed.

To ensure that the sum of the ideal integer distributions matches the sum of the original samples,

the user-defined function RoundToSum was employed. Note that the parameter 2 is used for error

type to minimize the relative error, preventing artificial rounding errors, particularly in the tails of the

distributions.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 18 / 27

sbSWV Program Code

#Const SORTED = False

Function sbSWV(sStat As String, _

 ParamArray vInput() As Variant) As Variant

'Calculate some statistical measures of weighted values

'Source (EN): http://www.sulprobil.de/sbswv_en/

'Source (DE): http://www.berndplumhoff.de/sbswv_de/

'(C) (P) by Bernd Plumhoff 20-Aug-2024 PB V0.81

Dim d As Double, d2 As Double, dSum As Double

Dim i As Long, j As Long, k As Long, m As Long, n As Long

Dim vV, vV2, vV3, vW 'Variants

With Application.WorksheetFunction

vV = .Transpose(vInput(0))

Select Case sStat

Case "COVAR", "CORREL"

 vV2 = .Transpose(vInput(1))

 vW = .Transpose(vInput(2))

Case Else

 vW = .Transpose(vInput(1))

End Select

On Error GoTo errhdl

i = vV(1) 'Force error in case of vertical arrays

On Error GoTo 0

If UBound(vV) <> UBound(vW) Then

 'Arrays of values and of weights must have same dimension

 sbSWV = CVErr(xlErrNum)

 Exit Function

End If

Select Case UCase(sStat)

Case "AVERAGE"

 sbSWV = .SumProduct(vV, vW) / .Sum(vW)

Case "CORREL"

 vV3 = vV

 dSum = .Sum(vW)

 d = .SumProduct(vV, vW) / dSum

 d2 = .SumProduct(vV2, vW) / dSum

 For i = LBound(vV) To UBound(vV)

 vV3(i) = vW(i) * (vV(i) - d) * (vV2(i) - d2)

 vV(i) = vW(i) * (vV(i) - d) ^ 2#

 vV2(i) = vW(i) * (vV2(i) - d2) ^ 2#

 Next i

 sbSWV = .Sum(vV3) / Sqr(.Sum(vV) * .Sum(vV2))

Case "COVAR"

 dSum = .Sum(vW)

 d = .SumProduct(vV, vW) / dSum

 d2 = .SumProduct(vV2, vW) / dSum

 For i = LBound(vV) To UBound(vV)

 vV(i) = vW(i) * (vV(i) - d) * (vV2(i) - d2)

 Next i

 sbSWV = .Sum(vV) / dSum

Case "KURT"

 n = .Sum(vW)

 ReDim dV(1 To n) As Double

 k = 1

 For i = 1 To UBound(vW)

 For j = 1 To vW(i)

 dV(k) = vV(i)

 k = k + 1

 Next j

 Next i

 sbSWV = .Kurt(dV)

Case "MODE"

 k = .Max(vW)

 If k < 2 Then

 sbSWV = CVErr(xlErrNA)

 Exit Function

 End If

 sbSWV = vV(.Match(.Max(vW), vW, False))

Case "MEDIAN"

 If .Min(vW) < 1 Then

 sbSWV = CVErr(xlErrNA)

 Exit Function

 End If

 k = 0

 j = .Sum(vW)

 m = j Mod 2

 For i = LBound(vW) To UBound(vW)

 If vW(i) Mod 1 <> 0 Then

 sbSWV = CVErr(xlErrNum)

 Exit Function

 End If

 #If Not SORTED Then

 'Ensure ascending values in case input is unsorted.

 'This simple bubble sort leads to a quadratic runtime

 'but it's still quicker on 50 input values or more than

 'Lorimer Miller's nifty worksheet function approach

 '=LOOKUP(2,1/FREQUENCY(SUM(B1:B50)/2,SUMIF(A1:A50,"<="&A1:A50,B1:B50)),A1:A50)

 'BTW: Lorimer's approach is different from Excel's MEDIAN

 '(see below); and his other elegant array formula

 '=MEDIAN(IF(TRANSPOSE(ROW(A1:A1000))<=B1:B50,A1:A50))

 'calculates like Excel's MEDIAN but IMHO it's way too slow

 For n = i + 1 To UBound(vW)

 If vV(n) < vV(i) Then

 d = vV(i)

 vV(i) = vV(n)

 vV(n) = d

 d = vW(i)

 vW(i) = vW(n)

 vW(n) = d

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 19 / 27

 End If

 Next n

 #End If

 k = k + vW(i)

 Select Case 2 * k

 Case j + m

 If m = 0 Then

 #If Not SORTED Then

 'Ensure vV(i + 1) is next greater value

 For n = i + 2 To UBound(vW)

 If vV(n) < vV(i + 1) Then

 vV(i + 1) = vV(n)

 End If

 Next n

 #End If

 'Here Lorimer's function mentioned above would

 'return vV(i), the lower value

 sbSWV = (vV(i) + vV(i + 1)) / 2#

 Else

 sbSWV = vV(i)

 End If

 Exit Function

 Case Is > j + m

 sbSWV = vV(i)

 Exit Function

 End Select

 Next i

Case "SKEW.P"

 n = .Sum(vW)

 ReDim dV(1 To n) As Double

 k = 1

 For i = 1 To UBound(vW)

 For j = 1 To vW(i)

 dV(k) = vV(i)

 k = k + 1

 Next j

 Next i

 sbSWV = .Skew_p(dV)

Case "STDEV"

 dSum = .Sum(vW)

 d = .SumProduct(vV, vW) / dSum

 For i = LBound(vV) To UBound(vV)

 vV(i) = Abs(vV(i) - d) ^ 2#

 Next i

 sbSWV = Sqr(.SumProduct(vV, vW) / (dSum - 1#))

Case "STDEV.P"

 dSum = .Sum(vW)

 d = .SumProduct(vV, vW) / dSum

 For i = LBound(vV) To UBound(vV)

 vV(i) = Abs(vV(i) - d) ^ 2#

 Next i

 sbSWV = Sqr(.SumProduct(vV, vW) / dSum)

Case "VAR"

 dSum = .Sum(vW)

 d = .SumProduct(vV, vW) / dSum

 For i = LBound(vV) To UBound(vV)

 vV(i) = vW(i) * (vV(i) - d) ^ 2#

 Next i

 sbSWV = .Sum(vV) / (dSum - 1#)

Case Else

 sbSWV = CVErr(xlErrValue)

End Select

Exit Function

errhdl:

'Transpose variants to be able to address them

'with vV(i), not vV(i,1)

vV = .Transpose(vV)

vW = .Transpose(vW)

Select Case sStat

Case "COVAR", "CORREL"

 vV2 = .Transpose(vV2)

End Select

Resume Next

End With

End Function

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 20 / 27

Distribution of Budgets Among Remaining Staff

When staff members leave, their budgets can be redistributed among the remaining employees

based on initial budget. But how can this redistribution be done accurately and fairly?

A Simple Approach

A simple formula which you can copy down from D3 to D12 is =ROUND(C3*B2/C2,2):

You can delete the budgets of leavers easily in column C. The order of deletions does not matter. The

obvious disadvantage of this approach is a potential rounding difference, because the sum of

rounded values is not necessary equal to the rounded sum of not-rounded summands. The example

above shows a difference of 0.02.

A Correct Calculation

With the user defined function RoundToSum you can use the spill formula

=RoundToSum(C4:C13*B3/C3,D1):

RoundToSum sometime needs to round to the ‘wrong’ side but then it ensures a minimal error.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 21 / 27

Take Vacation When Less is Going on

If your business fluctuates

strongly seasonally, you

can plan the vacation of

your staff accordingly and

consider hiring seasonal

staff:

Note: Of course you

cannot force anybody

when to take a vacation

and how many days are to

be taken. These

calculations are just

meant to be suggestions

of reasonable indicators.

Simple Example

If you like to take the maximum sales values (here: 24,000) as a basis, applying zero vacations to it,

and scale the vacation days linearly to the other sales values:

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 22 / 27

More Complex Example

If you got employees who are not present at specified months – RoundToSum rounds to whole

vacation days in the last table:

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 23 / 27

Assign Work Units Adjusted by Delivered Output

How can you fairly assign work units to your staff while considering the number of units they have

already delivered?

Yellow cells show input values,

green ones are intermediate or

helper cells, and blue cells mark

final output values. Note: You need

to enter ‘Units done’ in descending

order.

In this example 90.6 units have

already been delivered, but 86

more units are to be assigned to 28

lecturers. A fair share for each

lecturer would be (90.6 + 86) / 28 =

6.3, but 7 lecturers have already

delivered more than that.

Column C shows the fractional

results. In column D a simple

worksheet function approach has

been applied to round values of

column C to integers, preserving

their original sum.

As you can easily see, column E

shows smoother results using the

user defined function RoundToSum.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 24 / 27

RoundToSum Versus Other Methods

RoundToSum Versus Other “Simple” Methods

There are several different naïve approaches circulating around which try to round values preserving

their rounded sum:

- (worst) Round all values but the last one and replace the last one by the rounded original

sum minus the sum of the previously rounded values (i.e. aggregate all rounding errors in the

last summand):

- (better, but still bad) Apply a cascading (sliding) round:

Let us compare these approaches to RoundToSum.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 25 / 27

Calculation Example

We create 40 random numbers RAND() * 1000 and compare as follows:

As you can see, if we simply round each single number, the resulting sum would differ from the

original rounded sum by 0.06. Column J (VIII) shows the difference of the aggregated rounding error -

0.06 in the last summand. Column F (IV) shows the corresponding rounded numbers. Worst case

would be here to come up with an aggregated rounding error of n * 0,005 with n being the count of

your numbers. Example: Take 40 times the number 0.005 instead of the 40 random numbers.

Good practical examples, why you should not aggregate rounding errors in the last summand, are

normally distributed samples of integers.

The cascading (sliding) round in column I (VII) shows 12 roundings to the wrong side. Column E (III)

shows the corresponding rounded numbers. Worst case would be for the cascading round to round

half of your numbers to the wrong side when all numbers could have been rounded correctly.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 26 / 27

Example: Take 20 times the number -0.0049999 and then 20 times the number 0.0049999 instead of

the 40 random numbers.

On the other hand, the optimal RoundToSum just rounds 6 values to the wrong side which result in

the least number of changes which achieve the correct rounded sum. The worst case would now

involve n/2 roundings to the wrong side with n being the count of your numbers. Example: Take 40

times the number 0.005 again instead of the 40 random numbers. This is the best solution with the

smallest absolute rounding error for each number and then with the smallest number of roundings

to the wrong side.

Conclusion

Use RoundToSum. It will apply the least number of changes and it will result in the correct sum with

the smallest absolute (or relative) error.

A cascading round as shown above does not need any VBA nor does it apply any array formula, but it

requires at least as many rounding differences as RoundToSum but can leave you with much more

unnatural roundings which you can hardly explain to any senior manager.

But worst of all is the approach of aggregating all rounding differences in the last summand. Just

imagine 1,000 people, each having 49 Cents, adding up to $490, which you should distribute fairly,

but rounded to a whole Dollar. In this case you would end up with $490 at the last person, while

RoundToSum would give the first 490 persons one Dollar each and all the others zero.

(C) (P) 2024 Bernd Plumhoff RoundToSum (Status: 27-Oct-2024) Seite 27 / 27

RoundToSum Compared to the D’Hondt Approach

RoundToSum implements the Hare-Niemeyer approach. In the context of distributing parliamentary

seats, this method is superior to the D'Hondt approach. One key advantage is that the absolut value

of the relative percentage difference from an ideal proportional distribution is generally lower, as

illustrated by the following example:

sbDHondt Program Code

Function sbdHondt(lSeats As Long, vVotes As Variant) As Variant

'Implements the d'Hondt method for allocating seats in

'party-list proportional representation political election

'systems.

'Source (EN): http://www.sulprobil.de/sbdhondt_en/

'Source (DE): http://www.berndplumhoff.de/sbdhondt_de/

'(C) (P) by Bernd Plumhoff 01-Dec-2009 PB V0.10

Dim i As Long, k As Long, n As Long

Dim vA As Variant, vB As Variant, vR As Variant

Dim dMax As Double

With Application.WorksheetFunction

vA = .Transpose(.Transpose(vVotes))

vB = vA

n = UBound(vA, 1)

ReDim vR(1 To n, 1 To 1) As Variant

ReDim lDenom(1 To n) As Long

Do While i < lSeats

 'identify max

 dMax = .Max(vB)

 k = .Match(dMax, vB, 0)

 lDenom(k) = lDenom(k) + 1

 vB(k, 1) = vA(k, 1) / (lDenom(k) + 1#)

 vR(k, 1) = vR(k, 1) + 1

 i = i + 1

Loop

sbdHondt = vR

End With

End Function

Literature

Diaconis, P., & Freedman, D. (13. Juli 2007), On Rounding Percentages.

Sande, G. (2005, August 7), Guaranteed Controlled Rounding for Many Totals in Multi-way and

Hierarchical Tables.

